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Abstract
The discourse amongst diabetes specialists and academics regarding technology and artificial intelligence (AI) typically centres 
around the 10% of people with diabetes who have type 1 diabetes, focusing on glucose sensors, insulin pumps and, increasingly, 
closed-loop systems. This focus is reflected in conference topics, strategy documents, technology appraisals and funding streams. 
What is often overlooked is the wider application of data and AI, as demonstrated through published literature and emerging 
marketplace products, that offers promising avenues for enhanced clinical care, health-service efficiency and cost-effectiveness. 
This review provides an overview of AI techniques and explores the use and potential of AI and data-driven systems in a broad 
context, covering all diabetes types, encompassing: (1) patient education and self-management; (2) clinical decision support 
systems and predictive analytics, including diagnostic support, treatment and screening advice, complications prediction; and 
(3) the use of multimodal data, such as imaging or genetic data. The review provides a perspective on how data- and AI-driven 
systems could transform diabetes care in the coming years and how they could be integrated into daily clinical practice. We 
discuss evidence for benefits and potential harms, and consider existing barriers to scalable adoption, including challenges 
related to data availability and exchange, health inequality, clinician hesitancy and regulation. Stakeholders, including clinicians, 
academics, commissioners, policymakers and those with lived experience, must proactively collaborate to realise the potential 
benefits that AI-supported diabetes care could bring, whilst mitigating risk and navigating the challenges along the way.
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Introduction

The rapid growth in diabetes prevalence constitutes one of 
the greatest global health emergencies of the 21st century. 
Currently, diabetes affects 10% of the worldwide population, 

accounting for almost 1 trillion US dollars in expenditure. 
Management and sequalae of largely preventable complica-
tions consume most of the cost [1]. As the prevalence of dia-
betes grows, current models of diabetes care will be unable 
to scale to meet demand. Thus, the need for more efficient 
and cost-effective management is pressing. By facilitating per-
sonalised and streamlined care, data-driven solutions could 
improve patient outcomes and reduce the burden on health-
care providers. As such, they offer a promising opportunity 
to facilitate improved cost-effective care at scale worldwide.

The potential for data‑driven diabetes care

Data-driven artificial-intelligence (AI) solutions are widely 
used in many areas of life, such as banking and travel, but 
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healthcare has been slow to adopt them. Diabetes care lends 
itself well to the application of data-driven approaches, given 
the clear evidence-based targets and guidelines, as well as 
the high prevalence, necessitating scalable cost-effective 
healthcare delivery. Adaptive AI approaches can support 
clinical practice where there is emerging complexity, such 
as in diagnostic subtyping and personalised management (as 
highlighted in the 2020 ADA/EASD precision medicine Con-
sensus Report [2]). The wide range of patient-facing digital 
applications to support aspects of self-management (includ-
ing glucose control, dietary choice, activity tracking, foot 
screening and home diagnostics) are beginning to deliver a 
paradigm shift towards patient-led (and patient-empow-
erment in) healthcare. AI approaches have the potential to 
deliver insights directly to patients in a way that may influ-
ence their behaviour and downstream outcomes. Despite this, 
AI-based technology is not yet being implemented or adopted 
at scale for day-to-day diabetes management, and awareness 
is limited amongst the clinical workforce, with the exception 
being the use of diabetes technology in type 1 diabetes (i.e. 
insulin pumps, glucose sensors and closed-loop systems).

The data tsunami

Data has immense potential to support diabetes care and can 
be sourced from many outlets. For instance, medical records 
can offer information on demographics, medical history, 
diagnoses, medications, physiological observations, and 
laboratory and imaging data. People with diabetes can con-
tribute by providing reported data, such as symptom scor-
ing, by completing outcome or experience measure question-
naires. Home-recorded data, including glucose levels, blood 
pressure, weight, diet and activity, and results from emerging 
home diagnostics and screening tools, like home blood and 
urine testing and smart foot insoles, contribute to a broader 
understanding. Additionally, wider social and environmental 
data, such as weather, economic trends, consumer habits, 
food purchases, nutritional intake, peer interaction and geog-
raphy, can help personalise and localise self-management 
advice. Whilst genomic data are not yet widely available, 
the advent of rapid-throughput and low-cost genotyping will 
undoubtedly make them a vital input for future healthcare-
prediction or precision-medicine tools.

The potential of these data is significant, but at present 
most data are underutilised, as practical tools to aggregate, 
synthesise, understand and present them in a diabetes con-
text are limited, despite an exponential increase in publica-
tions relating to diabetes and AI in recent years [3]. Utilisa-
tion of this wealth of data through AI and digitally supported 
healthcare is increasingly recognised by key strategic, fund-
ing and commissioning organisations, such as governments 
and healthcare providers, with substantial increases in 

funding and research focused on AI, personalised medicine 
and digitally enabled healthcare delivery [4, 5].

What is AI?

AI is an umbrella term that can be defined in many ways. 
The Encyclopaedia Britannica explains AI as ‘the ability 
of a digital computer or computer-controlled robot to per-
form tasks commonly associated with intelligent beings’ [6]. 
Examples of AI technologies can include automation, robot-
ics, natural language processing, generative techniques (such 
as image generation) and machine learning (see Text box). 
Whilst a purist approach would require an element of ‘learn-
ing’ within an AI system, and separation of machine learning 
from AI, a broader definition includes a range from simple 
automated calculations, through to rule-based approaches 
and more complex learning systems (see Fig. 1) [3].

Both simple calculators and rule-based approaches are 
used throughout diabetes care in various contexts, such as 
for insulin dosing or clinical alerts [7]. Beyond these, more 
complex systems exist, which commonly involve experien-
tial learning (see Fig. 2). Machine learning can be broadly 
methodologically categorised into supervised, unsupervised 
and reinforcement approaches (see Table 1). These tech-
niques have broad applications within diabetes care, such 
as prediction of diagnosis, complication occurrence or treat-
ment response, image analysis and medication management.

Contreras and Vehi categorise AI methodologies into 
three main groups: (1) methods used for exploring and dis-
covering information; (2) methods aimed at learning to use 
information; and (3) those used for extracting conclusions 
from information [3]. However, data collection and analy-
sis alone are not enough to deliver impact; data needs to 
be transformed into a usable output resulting in a change 
in practice or behaviour. Further steps can include utilising 
outputs to deliver continuous improvement within a learn-
ing health system, and presenting clinically relevant outputs 
through a decision support system (DSS) that can integrate 
with clinical care and aim to modify behaviour [8].

What is a DSS?

Clinical DSS are key tools that enable delivery of AI into the 
hands of patients or clinicians. In essence, DSS are computer 
programs that support analysis of large datasets to deliver timely 
information, usually at the point of care, with the aim to improve 
care quality and clinical outcomes. Clinical DSS usually turn 
data (after application of logic/transformation) into knowledge 
or meaningful advice through a digital interface (e.g. report, 
dashboard, alert, message or other output; see Fig. 3).

For clinicians, data-driven AI-enhanced DSS can be effec-
tively applied in two main contexts: individual patient man-
agement (for instance, predicting complications, assisting 
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with diagnosis or estimating treatment responses) and com-
prehensive population management/screening, which can 
guide the triage process and facilitate a broader reorganisa-
tion of care delivery. DSS aim to aid clinicians by consolidat-
ing and interpreting information from various data sources 
to streamline workflows, ease cognitive burden, and provide 
clear, actionable insights at the point of care. This may be 
particularly useful in the context of diabetes, which is often 
managed by generalist physicians. These physicians may find 
it challenging to stay updated with complex and changing 
guidelines, medications and monitoring requirements, whilst 
simultaneously being faced with short appointment times and 
high (and growing) patient volumes (see Fig. 4).

Whilst significant academic progress has been made to 
develop DSS and predictive models using AI, this is not cur-
rently matched by investment in the development or imple-
mentation of software tools that integrate into the existing 
digital platforms that are used in common clinical settings. 
This translational step is necessary to deliver improved care 
and derive clinical benefit.

How can AI or DSS be used for diabetes care?

In 2019, Dankwa-Mullan et al conducted a review of publi-
cations on AI in diabetes, dividing these into the following 
categories: (1) predictive population risk stratification (135 
publications); (2) clinician DSS (126 publications); (3) auto-
mated retinal screening (96 publications); and (4) patient self-
management tools (94 publications), mainly focusing on glu-
cose sensors and closed-loop technology [9]. Other reviews 
have specifically focused on AI applications in a local context 
(e.g. in India) [10], on detection, diagnosis, and self-manage-
ment [11], and on diabetes education and management [12]. 
To further explore uses of AI for diabetes care, in this review, 
we divide diabetes-associated AI applications into three broad 
categories, covering both individual and population tools:

(1) patient self-management (education and support, and 
insulin and glucose management);

(2) image analysis (retinopathy, other applications); and
(3) clinician DSS (complications prediction, diagnostic 

support, personalised treatment).

Patient self‑management: education and support The benefits 
of education and self-management support in diabetes are well 
established, but attendance at traditional face-to-face delivery is 
poor, likely due to inaccessibility, competing priorities and poor 
motivation [13]. Digital tools to flexibly deliver broad education 
or point-of-need intervention could be very effective.

Glossary of terms

Artificial intelligence An umbrella group of 

techniques that enable a computer algorithm to 

perform tasks typically associated with human 

intelligence

Automation The use of technology and machines to 

perform tasks or processes with minimal human 

intervention

Decision support system A computer-based tool or 

software that assists individuals or organisations in 

making informed decisions by providing data or 

performing analyses

Deep learning A subset of machine learning that 

uses neural networks (like neurons in the human 

brain) to imitate human-like intelligence, automatically 

learning and extracting data features

Digital exclusion Circumstances in which individuals 

or population groups lack ability to effectively engage 

with digital technologies, such as computers or the 

internet. Limited access and digital skills are often 

influenced by economic, social and geographical 

factors

Digitisation The process of converting analogue 

information (e.g. paper documentation) into digital 

format, making it accessible and manipulable by 

computers

Generative techniques A group of artificial-

intelligence techniques that utilise models capable of 

producing novel content (e.g. text, images, video, 

audio, code) resembling the data they were trained on

Interoperability The ability of different digital 

systems, devices or software to exchange and use 

data or information, allowing them to work together

Machine learning A subset of artificial intelligence 

that uses statistical methods to enable machines to 

improve performance (learn) with experience. The 

developer must typically manually engineer features

Natural language processing A field of artificial      

intelligence that involves enabling machines to 

understand, interpret and generate human language

Personalised medicine The tailoring of medical 

treatment to an individual's unique circumstances 

(e.g. genetics, demographics, medical history) to 

provide more effective clinical interventions

Robotics The design, construction, operation and 

use of robots, which are autonomous or semi-

autonomous machines capable of performing tasks
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AI can support personalisation of educational content 
and advice, allowing scaled delivery of tailored educa-
tional content. Population-level tools exist that apply 
AI-based approaches to electronic-health-record and 

home-recorded data, producing data visualisations (e.g. 
 HbA1c trends or target summaries), enabling improved 
health understanding and patient empowerment [14]. 
Insights from this data can be presented as personalised 

Fig. 1  Data-driven tools can include simple calculators, rule-based approaches and AI-driven approaches. Each approach has varied applications 
in diabetes care. ICR, insulin:carbohydrate ratio. This figure is available as part of a downl oadab le slide set

Machine

learning

An umbrella group of techniques that enable a

computer algorithm to perform tasks typically

associated with human intelligence.

A subset of AI that uses statistical methods to

enable machines to improve performance (learn)

with experience. The developer must typically

manually engineer featuresa. 

A subset of machine learning that uses neural

networks (like neurons in the human brain) to

imitate human-like intelligence, automatically

learning and extracting data featuresa.

Deep 

learning

AI

Fig. 2  An overview of AI and its subcomponents, including machine learning and deep learning. aA feature refers to an individual and measur-
able characteristic of data and is typically numerical or categorical. This figure is available as part of a downl oadab le slide set

https://static-content.springer.com/esm/art%3A10.1007%2Fs00125-023-06038-8/MediaObjects/125_2023_6038_MOESM1_ESM.pptx
https://static-content.springer.com/esm/art%3A10.1007%2Fs00125-023-06038-8/MediaObjects/125_2023_6038_MOESM1_ESM.pptx
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recommendations and nudges to encourage healthy life-
style choices, early identification of problems when they 
arise and optimal engagement with healthcare services. 
Digital tools and remote support may be especially advan-
tageous for managing gestational diabetes. Glucose-mon-
itoring notifications and recommendations for medication 
and lifestyle adjustment may prove highly effective, par-
ticularly since women with gestational diabetes are typi-
cally young, digitally literate, and motivated to engage 
with digital tools due to their flexibility and desire to 
improve self-care to mitigate adverse pregnancy outcomes 
[12, 15].

The potential to integrate lifestyle data, such as physi-
cal activity and nutritional intake, enables more sophis-
ticated automated nudge solutions to encourage activity 
and behaviour change and provide feedback to the indi-
vidual [16–20]. Further, this data can enhance glucose 
and insulin dose calculations. The advent of smartphone 
applications that can predict nutritional macronutrients 
from photographs [18], phone accelerometers and weara-
bles to collect activity information, and continuous and 
flash glucose-monitoring systems for high-frequency auto-
matic glucose tracking is improving the ease and volume of 
home-recorded real-time data delivery to drive AI advice 
tools for both patients and clinicians.

Risk prediction of acute and chronic diabetic compli-
cations is usually reserved for clinician tools; however, 
patient-facing tools that demonstrate risk of future compli-
cations directly to patients have been developed [21, 22]. 
Such estimates, when carefully presented as calculators, 
can help to explain risk subcomponents and act as both 
motivators for behaviour change and metrics through which 
goals can be set (and progress towards them tracked). Addi-
tionally, novel tools are emerging or being evaluated that 
incorporate interlinked personalised predictive models and 

automated e-coaching, many based on behavioural change 
theories [23].

Patient self‑management: insulin and glucose manage‑
ment Numerous commercial AI-driven glycaemic tech-
nologies are available today, including glucose-monitoring 
and insulin-dosing systems that range in complexity and 
autonomy. Notably, the advent of wearable sensors that 
enable intermittently scanned or continuous glucose moni-
toring have transformed day-to-day glucose monitoring. 
They provide real-time glucose trajectories and trends, fea-
ture high and low glucose alarms, and interface with insu-
lin-delivery systems and algorithms allowing autonomous 
closed-loop insulin administration. In terms of insulin 
administration, AI-driven systems span a broad spectrum; 
they extend from basic bolus dose calculations to progres-
sive insulin titration algorithms, right up to highly sophisti-
cated, autonomous continuous insulin infusion closed-loop 
systems designed for continuous insulin infusion (termed 
as the 'artificial pancreas'). Many trials have demonstrated 
that continuous glucose monitoring and closed-loop tech-
nologies improve time in target blood glucose range and 
reduce hypoglycaemic events [20, 24]. Psychosocial out-
comes are typically favourable, including reduced diabetes 
distress and improved sleep, although challenges related to 
technical issues and dependence on technology persist [25, 
26]. For type 2 diabetes specifically, AI-based DSS par-
ticularly focus on automated insulin titration recommenda-
tions; when combined with clinician support, these systems 
have been demonstrated to outperform clinician support 
alone [27]. Machine-learning techniques for predicting 
hypoglycaemia provide another active area of research. 
Multiple physiological data sources, such as blood glucose 
data, electronic health records and electrocardiography 
data, are being utilised to optimise prediction [28]. This 

Table 1  An overview of machine-learning methodologies (supervised, unsupervised and reinforcement)

ML, machine learning; SARSA, state–action–reward–state–action

Supervised ML Unsupervised ML Reinforcement ML

Definition Learning with a labelled dataset 
to find rules that map inputs to 
outputs

Identification of patterns or features 
in unlabelled data

Learning through interaction with the 
environment

Aim Predict outcomes Discover underlying patterns Find an optimal series of actions
Type of data Labelled Unlabelled Dynamic environment
Type of problem Classification and regression Association and clustering Exploration and exploitation
Example algorithms Decision trees, logistic regression, 

linear regression, support vector 
machine, naive Bayes, artificial 
neural networks

k-means clustering, principal com-
ponent analysis, hierarchical clus-
tering, artificial neural networks

Monte Carlo, SARSA, Q-learning

Example of use in diabetes Diagnosis or complication predic-
tion, decision support

Retinal image analysis, identification 
of clinically significant sub-phe-
notypes

Automated insulin delivery and 
optimisation of wider therapeutic 
strategies
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approach has substantial potential to lay the groundwork 
for future tools in diabetes management.

Image analysis: retinopathy Retinal image analysis for the 
detection of diabetic retinopathy is an area that is ripe for 
exploitation through AI, with the potential to reduce the 
human resource requirement for retinopathy screening and 
grading [29]. Many autonomous AI systems for diabetic 
retinopathy detection have been or are now being developed 
and, in some cases, are built into commercially available 
systems displaying safety and efficacy, resulting in Food 
and Drug Administration (FDA) approval [30–32]. Auto-
graders for low-risk eye screening have been used at scale 
as part of national programmes in the UK for many years, 
with acceptable safety and efficiency savings [33]. Further, 
the characteristics of retinal imagery, both alone and in com-
bination with genetic data, have shown it to have utility as 
a biomarker for the prediction of wider cardiovascular risk 
as well as complications related to other organs (owing to 
shared underlying pathophysiology) [34, 35].

Image analysis: other applications Beyond the eye, many other 
diabetes applications for image analysis exist. Uses relating 
to screening for diabetic foot disease and associated wound 

analysis is one such example [36]. Understanding the evolution 
of wounds is a common clinical challenge, particularly when 
documentation is limited to text-based descriptions. Data-
driven systems can improve foot monitoring quality by simply 
providing a repository for home- or clinician-recorded photo-
graphic data in a standardised format [37]. Once such data are 
centralised, AI-based tools can analyse imagery to screen for 
foot problems, or sequentially track active foot wounds through 
monitoring of surface features (e.g. area, colour) providing rel-
evant alerts in the event of clinical deterioration. Interestingly, 
deep-learning approaches have recently been used to uncover 
new uses for electronic-health-record imaging data collected 
for other purposes, as demonstrated by a recent study present-
ing a model that predicts type 2 diabetes diagnosis from chest 
radiographs [38]. Explainability analysis suggested distribu-
tion of adiposity (particularly mediastinal lipomatosis) as a 
predictive driver, yielding biological insights in addition to 
predictive screening potential.

Clinician decision support: complications prediction One 
of the most prolific uses of big healthcare data is the pre-
diction of future health states. For diabetes, this usually 
relates to prediction of short- and long-term complica-
tions, such as hospitalisation, low and high blood glucose 

Fig. 4  Why is clinician decision support necessary? As shown in the 
figure, many factors demand clinician time and drive the complexity 
of diabetes care. Clinician DSS aim to improve efficiency and reduce 
cognitive burden through prompts, automation and targeted advice. 
Targeted and timely DSS can make up-to-date, evidence-based infor-
mation (e.g. guidelines, treatments, monitoring requirements) avail-

able to clinicians to facilitate informed decision-making. Addition-
ally, through the analysis and synthesis of diverse data sources, DSS 
can support streamlined and efficient care, which is crucial to address 
challenges like limited appointment times and high patient volumes. 
This figure is available as part of a downl oadab le slide set

https://static-content.springer.com/esm/art%3A10.1007%2Fs00125-023-06038-8/MediaObjects/125_2023_6038_MOESM1_ESM.pptx
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events (including ketoacidosis), and macro- and micro-
vascular complications, such as cardiovascular disease, 
and eye, feet and kidney complications [39]. Some of the 
earliest cardiovascular risk-predictor tools came from the 
Framingham studies [40] and, later, the UK Prospective 
Diabetes Study [41]. Since then, many models and tools 
have been developed that focus on specific complica-
tions, such as retinopathy (to determine personalised 
screening intervals) [42], or hypoglycaemia prediction 
[43]. Prevention of foot complications, such as ulcers 
and amputations, could translate to significant health 
and social care cost savings if linked to early prevention 
interventions. Simple rule-based foot risk calculators 
(such as that developed by the Scottish Diabetes Foot 
Action Group) have been automated through the Scot-
tish Care Information (SCI)-diabetes platform, leading to 
personalised screening follow-up and self-management 
advice [44].

Clinician decision support: diagnostic support Clinician 
DSS in diabetes can also assist with risk prediction and 
diagnosis of diabetes [45], and subtyping of diabetes into 
type 1 and type 2 diabetes and rarer but well-established 
monogenic subtypes [46]. Type 2 diabetes, however, is a 
highly heterogeneous condition, and further subtyping into 
distinct groups based on phenotypic and polygenic cluster-
ing may help to predict prognoses and preferential treatment 
responses; this complexity lends itself well to an AI-driven 
DSS approach [47].

Clinician decision support: personalised treatment and pre‑
scribing for type 2 diabetes As the number of pharmaco-
logical options for lowering glucose levels in type 2 diabetes 
increases, prescription decisions become more challenging, 
particularly for generalist prescribers. In addition to gly-
caemic benefits, it is increasingly important to consider 
the longer-term cardiovascular benefits of medication, as 
reflected in recent European and US guidelines [48]. Per-
sonalised prescribing could improve outcomes, rationalise 
choice of medications and minimise side effects [2, 49]. 
Routinely collected electronic-health-record data alone can 
help to predict patient medication response [50]. Pharma-
cogenomics is a growing area of investigation; we know that 
genetic variation plays a contributory role in interindividual 
differences in response to multiple drugs, potentially through 
modulation of narrow biological drug-action pathways 
[51]. As links between genetic variants and drug response 
and intolerance phenotypes grow, incorporation of genetic 
data in treatment-response prediction models will become 
increasingly important. Increasing the volume, depth and 
modality of data inputs will likely improve accuracy and 
application of AI tools; emerging DSS systems are trying to 
capitalise on such multimodal inputs [52].

Do diabetes‑related AI and DSS work?

A 2020 meta-analysis of controlled trials showed that, over-
all, data-driven DSS can improve health outcomes, deliv-
ering, on average, small mean improvements in outcomes 
with wide variation (mirroring the interventions and clini-
cal settings assessed) [53]. Similarly, a 2018 review of 70 
inpatient DSS studies (of which 14 pertained to blood glu-
cose management) found that 70% had beneficial outcomes 
(including reduced mortality and reduced life-threatening 
events), 29% found no benefit and only one study showed 
harm (increased hypoglycaemia) [54]. Overall, the evidence 
for improved outcomes and impact relating to the use of 
AI and linked DSS in diabetes (particularly beyond glucose 
control or insulin management) is still emerging, and highly 
context and system dependent.

A 2019 review of systematic reviews for diabetes-related 
clinical DSS that comprised varied interventions concluded 
that they ‘improved the quality of diabetes care by incon-
sistently improving processes of care or patient outcomes’ 
(this was observed in 85% and 31% of the studies assessed, 
respectively) and determined that providing alerts, reminders 
or feedback was most likely to have an impact on diabetes 
care [55]. The authors noted that methodology was poorly 
reported, limiting confidence in the available evidence. A 
2020 review of diabetes-related DSS concluded that ‘intel-
ligent technical reforms have produced better glyc[a]emic 
control with reductions in fasting and postprandial glucose 
levels, glucose excursions, and glycosylated h[a]emoglobin’ 
[56]. Others have shown a reduction in the time devoted by 
clinicians to patients and in face-to-face visits per patient 
[3]. A 2013 meta-analysis by Jeffery et al showed that clini-
cian DSS in diabetes management may marginally improve 
clinical outcomes, but confidence in the evidence was low 
because of bias and study heterogeneity [57]. O'Connor and 
colleagues found similar limitations of the evidence base but 
suggested that systems that support patient communications 
and integrate patient-record and remote device information 
in clinical decision algorithms and interfaces are more likely 
to be effective [58]. This is reflected in current development 
trends; an example of a successful health-record integrated 
DSS is described by Conway et al, with significant associ-
ated improvements in clinical outcomes and clinician adher-
ence to screening recommendations compared with matched 
control participants [59].

Evidence syntheses are clearly important to understand 
DSS as a concept and identify techniques or domains in 
which efficacy seems most likely. However, as reviews 
identify, AI technologies are incredibly diverse in their user 
interface, experience, features, sophistication and reliabil-
ity [3, 7, 9–12, 15]. Such diversity undermines attempts to 
meta-analyse efficacy data; poor quality, ineffective DSS 
should not detract from effective and adequately evidenced 
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interventions that could yield benefit. We therefore caution 
drawing conclusions based on what the average DSS system 
might achieve, as only the best should be clinically imple-
mented. Selecting the best DSS, those that warrant incorpo-
ration into daily clinical practice, remains a challenge, and 
existing evidence is complicated by the quantity of low-qual-
ity non-randomised trials at high risk of bias [54]. Further, 
the existing evidence shows that many diabetes-related DSS 
do not translate into improved clinical outcomes, particularly 
regarding longer-term clinical outcomes, which are seldom 
assessed. Where other systems show benefit, typically mod-
est improvements in glycaemic or metabolic parameters are 
observed. Notably, DSS systems need not work in isolation; 
these effects could be compounded by implementation of 
numerous DSS seeking to influence behaviour across mul-
tiple domains.

There are many important priorities that future research 
on DSS should address. Current evidence shows that most 
DSS remain rule based [54]; more complex AI-based DSS 
may impact outcomes differently. Unpicking variations in 
outcomes between rule- and more complex AI-based DSS 
should be a focus for future evidence synthesis research. 
Other research priorities should include a focus on collect-
ing longer-term follow-up data, including quality-of-life 
outcomes. Qualitative studies to better understand how DSS 
systems could (positively or negatively) disrupt existing 
workflows and integrate with existing digital platforms (e.g. 
electronic health records) would help guide future best prac-
tices. A diversity of outcomes is also important to assess. For 
clinicians, a DSS system that helps achieve screening targets 
or improves consultation efficiency may be very worthwhile, 
although such outcomes are not typically reported in exist-
ing studies. As many systems aim to improve efficiency at 
a population scale in a low-cost manner, it is important to 
incorporate economic analysis into future research.

Challenges relating to the adoption of AI 
and data‑driven technologies for diabetes care

As discussed, AI and data-driven technologies offer the 
potential to complement and transform diabetes-care 
delivery. However, several barriers must be overcome 
for effective adoption and implementation. These include 
challenges related to data accessibility, sharing and stand-
ardisation, regulatory compliance and safety considera-
tions, equity aspects, and the attitudes of both clinicians 
and patients.

Data availability and flow For data-driven and AI technolo-
gies to successfully leverage healthcare data, access to data 
in a usable format is essential. This necessitates the basic 
digitisation of healthcare records and, although progress 
has been made, substantial variability in digital maturity of 

healthcare organisations exists between and within Euro-
pean countries. For example, 69% of clinicians practising in 
Italy reported usage of an electronic health record compared 
with 77% in Germany, 87% in the UK and 97% in the Neth-
erlands [60]. Clearly, ongoing investment in basic digital 
infrastructure is still required. Further, the way in which data 
are stored and exchanged digitally is important when con-
sidering how data-driven technologies may be developed or 
integrated. Healthcare datasets typically exist, containing 
non-standardised data (with varying structures/naming con-
ventions), siloed in numerous incompatible record systems 
within and across countries. This extreme diversity makes 
efficient sharing and utilisation of information difficult, and 
system crosstalk between internal, external or novel systems 
challenging. This lack of digital interoperability limits data 
sharing between people, care settings and organisations, pos-
ing a significant barrier to development or scaled integration 
of innovative technologies.

Solutions to address such issues are complex and 
require significant investment. The National Health Ser-
vice (NHS) England has recently begun formal procure-
ment for a £480 million federated data platform that aims 
to centralise data to facilitate sharing [61] and has devel-
oped national diabetes data standards [62]. The European 
Commission plan to digitise all medical records in the 
European Union (EU) by 2025 through creation of the 
European Health Data Space [63]. Other European initia-
tives focusing on the development of data dictionaries, 
standards and core outcome sets have potential to improve 
data sharing, although success is dependent on consist-
ent adoption [64, 65]. Machine-learning approaches can 
also contribute by aiding in the identification of common 
features within datasets, which can assist in data harmoni-
sation. Additionally, federated-learning approaches allow 
the training of models using multiple discrete datasets 
located in different physical locations. In this decentralised 
method, models are trained locally on each dataset and the 
learned parameters are subsequently aggregated to form a 
global model. This ensures data privacy and reduces the 
need for data centralisation, whilst still enabling research-
ers to benefit from the insights gathered across diverse 
data sources.

Fairness and health equity AI technologies have the poten-
tial to revolutionise diabetes-associated decision-making in 
resource-limited settings by providing accurate and timely 
decision support or facilitating low-cost population health 
surveillance. However, such opportunity may be undermined 
by the limited generalisability of these technologies outside 
of the datasets and populations from which they are trained 
[66]. Despite diabetes disproportionally affecting ethnically 
minoritised and socioeconomically disadvantaged groups 
[67], AI training datasets are often inadequately diverse. 
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Globally, datasets predominantly focus on cohorts from 
high-income countries, with a preponderance of individu-
als of European ancestry [66]. Consequently, applications 
can demonstrate learned bias or be limited to use within 
specific groups; AI-associated exacerbation of racial or 
ethnic health inequality should not be underestimated. To 
mitigate potential widening of health disparities, it is crucial 
to establish data infrastructures in data-poor regions to pro-
actively improve the diversity of training datasets; diverse 
stakeholder groups should be consulted prior to development 
taking place.

Delivering data-driven tools directly to people with dia-
betes could result in widening health inequalities. Digital 
exclusion can occur through poor digital literacy or inability 
to use, access or afford technology or internet access. In 
the UK, an estimated 5 million people are not connected to 
the internet and only around half of the global population 
are online [68]. Many drivers of digital exclusion exist that 
compound one another (e.g. ethnicity, deprivation, age, edu-
cation and sex). Type 2 diabetes disproportionately affects 
older adults, a population in which digital skills are limited 
and musculoskeletal, hearing, visual and cognitive impair-
ments contribute to reduced access [69]. As the inevitable 
trend towards digitally enabled healthcare continues, strat-
egies (e.g. user co-design, combatting inherent biases) to 
improve access for older people are necessary.

Patient and clinician attitudes The attitudes of both patients 
and clinicians in relation to the use of AI and data-driven 
technologies in diabetes care is central to their adoption. A 
recent systematic review of patient attitudes towards clini-
cal AI found general positivity and willingness to engage 
but noted several reservations [70]. Patients sought proof of 
effectiveness and understanding of the exact application of 
AI technology. Concerns included dependence on technol-
ogy, and the risk of depersonalisation, particularly relating 
to use of chatbots. As such, patients highlighted their desire 
for clinician involvement and oversight. Broadly, clinicians 
embrace the synthesis of information, improved diagnos-
tic accuracy and reduced administrative burden that AI can 
bring [71]. However, concerns focused on liability for AI-
associated errors, privacy and confidentiality, poor under-
standing and AI-related training, and potential for erosion 
of patient contact.

Safety, security and regulatory considerations Ensuring 
clinical safety and data security is essential for successful 
implementation of AI and data-driven tools in diabetes care. 
Recently, the public release of large language models, such 
as Generative Pre-trained Transformer (GPT)-4 (ChatGPT) 
has led to concerns regarding the potential risks and safety 
of the unsupervised healthcare advice generated by these 
models [72]. The regulatory landscape in Europe and the 

USA has rapidly evolved over recent years to accommodate 
the shift from regulation of largely physical medical devices 
to software as a medical device [73]. This has been challeng-
ing, particularly given the demand from software companies 
and the limited capacity of regulatory consultants and noti-
fied bodies to review and support regulatory submissions. 
Brexit has further created a disparity between UK and EU 
regulatory requirements, at least in the short term. In a 2020 
report, dozens of FDA-cleared medical devices that use AI/
machine-learning technology were reported. Most of these 
approvals are linked to radiology, cardiology and oncology, 
and only three AI-based medical devices were related to 
diabetes management [74]. Clinical approval bodies, such 
as the National Institute for Health and Care Excellence in 
the UK, have been slow to develop scalable pathways for 
approval of AI-driven tools and software more generally. A 
recent Regulatory Horizons Council UK government report 
expressed concern regarding a lack of understanding to 
ensure effectiveness of these technologies, and how best to 
detect, analyse, report and action errors and potential harms 
arising from usage [75]. Many devices go through approvals 
with minimal evidence as to their real-world safety and there 
is little consensus as to how this safety should be assured. 
The report recommends significant government investment 
in AI regulation, and the development of transparent clear 
frameworks, processes and leadership.

Conclusion

Although the development of AI-driven functionality in 
healthcare is expanding rapidly, AI-enabled DSS largely 
remain in their infancy. Globally, the market for AI health 
technologies is expected to grow at a compound annual 
growth rate of 38.4% from 2022 to 2030, reaching 208 bil-
lion US dollars by 2030 [76]. In parallel, future diabetes 
projections look bleak; forecasts estimate that by 2050, 
1.31 billion people will be living with diabetes [77]. Recent 
decades have seen major cultural shifts in eating habits and 
activity levels that have catalysed an obesity crisis and, in 
2021, 96% of diabetes cases were reported as being type 
2 diabetes. It is evident that a comprehensive approach 
is necessary and, although AI-based tools alone will be 
no panacea, their benefits must not be ignored. Such tools 
can be delivered at low cost and scaled throughout a popu-
lation or clinical workforce to deliver significant benefit. 
The anticipated increase in data availability, coupled with 
enhanced data access, is likely to yield superior predictive 
abilities, utility, adoption and widespread clinical impact. 
Yet, the practical, timely and ethical integration of these 
tools into existing clinical scenarios continues to pose a 
challenge. Nevertheless, the momentum is unmistakably 
shifting, and all stakeholders—citizens, public institutions 
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and private organisations—must swiftly adapt to both reap 
the benefits and reduce the risk that our digitised and AI-
enabled new world could bring.
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